

OVER Ir/La_{1-x}Sr_xMnO₃-PEROVSKITE CATALYSTS DROSOU C., STRATAKIS A., FOUNTOULI T.V., NIKOLAOU V., MATSOUKA C., NALMANDIAN L., ZASPALIS V., CHARISIOU N.D., GOULA M.A., YENTEKAKIS I.V.

1. Introduction

- \Box <u>Perovskites</u> (ABO₃ where A: a lanthanide and B: a transition metal, e.g., Mn³⁺, Cr³⁺, V³⁺, Fe³⁺, Co³⁺, Ni³⁺), are characterized by remarkable thermal stability, oxygen ion mobility and crystalline structure. Good catalytic activity in oxidation reactions e.g., CO oxidation, but at elevated temperatures
- **Iridium** is a relatively inexpensive noble metal with exceptional properties in CO and hydrocarbon oxidation, NOx reduction reactions.

Sintering & deactivation of Ir-based catalysts, under high temperatures & oxidizing conditions

Stabilization of Ir nanoparticles by using supports with high oxygen storage capacity / lability values (Fig. 1)

Objectives

- \blacktriangleright Synthesis of La_{1-x}Sr_xMnO₃ perovskites and usage as supports, with high OSC values, for the dispersion of Ir nanoparticles.
- Characterization of LSM supports & Ir-LSM catalysts by various techniques.
- Evaluation of Ir-LSM catalysts' catalytic activity and stability on CO oxidation.
- > Understanding of structure-activity-stability correlations of Ir-LSM catalysts.

ΠΑΝΕΠΙΣΤΗΜΙΟ

CatEfDeNO

PROJECT 2018-2021

-80

-54

-26

-63

ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Fig. 1 Model for sintering resistance against particle migration & coalescence (PMC) or Ostwald Ripening sequence (OR) and redispersion induced by the simultaneous action of interparticle repulsion forces arising from effective double layer and atom trapping at oxygen ion vacancies. Modified picture from Goula et al., Catalysts, 2019, 9(6), 541.

2. Experimental

2.1 Ir-LSM catalysts synthesis

- ✓ Preparation of Perovskites $La_{1-x}Sr_xMnO_3$ via co-precipitation (**Table 1**)
- \checkmark Ir addition on LSM by wet impregnation.

2.2 Characterization techniques

- \checkmark N₂ physical adsorption-desorption isotherms (BET-BJH)
- ✓ X-ray powder diffraction (XRD) analysis
- ✓ Hydrogen temperature programmed reduction (H_2 -TPR)
- ✓ Isothermal hydrogen chemisorption (H_2 -Chem)

2.3 Kinetic and stability experiments

Kinetic experiments in a quartz fixed-bed reactor,

Feed Gas mixture: 1 % v/v CO, 5 % v/v O₂ /He, F_T =160 mL/min (wGHSV=480 000 mL/g_{cat}h)

✓ Pre-reduced Ir-catalysts (25% H_2/He , 400° C, 1 h)

✓ Pre-oxidized Ir-catalysts (20% O_2 /He, 400° C, 1 h)

✓ Thermal stability experiments at 350°C after consecutive oxidation steps at 600°C and 750°C.

3. Results

Table 1. Textural, morphological and reducibility characteristics of the $La_{1-x}Sr_xMnO_3$ perovskite supports and the counterpart 2wt%Ir/La_{1-x}Sr_xMnO₃ catalysts.

Sample code	Chemical Formula	S _{BET} (m²/g)	Average pore diameter (nm)	OSC (µmol O ₂ /g)	Mean Ir particle size (nm)*	lr Dispersion (%)
LSM00	LaMnO₃	12.0	10.9	671	-	-
LSM30	La _{0.7} Sr _{0.3} MnO ₃	10.4	9.84	766	-	-
LSM50	La _{0.5} Sr _{0.5} MnO ₃	6.8	8.91	886	-	-
LSM70	La _{0.3} Sr _{0.7} MnO ₃	11.3	8.79	1219	-	-
Ir/LSM00	2wt%lr/LaMnO ₃	9.7	11.9	502	1.1	63
lr/LSM30	2wt%lr/La _{0.7} Sr _{0.3} MnO ₃	10.5	9.96	981	1.1	62
lr/LSM50	$2wt\%lr/La_{0.5}Sr_{0.5}MnO_3$	6.2	8.11	1203	1.0	73
lr/LSM70	2wt%lr/La _{0.3} Sr _{0.7} MnO ₃	11.0	13.7	1348	1.2	61

Table 2. The temperature for 50% CO conversion (T_{50}) on LSM perovskite supports and counterpart Ir/LSM catalysts for pre-reduced and pre-oxidized samples.

Sample code	T ₅₀ (°C) pre- reduced	T ₅₀ (°C) pre- oxidized	ΔT ₅₀ (°C) pre-reduced – pre- oxidized	ΔT ₅₀ (°C) Ir/LSM – LSM (pre-reduced)	ΔT ₅₀ (°C) Ir/LSM – LSM (pre-oxidized)
LSM00	314	385	-71		
12W3U	221	3/10	_0_		

pre-reduced (a) and pre-oxidized (b) samples. Feed conditions: 1.0% CO, 5.0% O₂ He balance at 1 bar; F-=160 mL/min, catalyst mass m =20 mg, wGHSV=480,000 mL/g.h. Open sympols and dashed lines depict LSM perovskite supports, filled symbols and solid lines depict Ir/LSM catalysts (squares: Ir-LSM00; circles: Ir-LSM30, triangles: Ir-LSM50, stars: LSM70).

reduced Ir-LSM catalysts. Narrows show the direction of data acquisition. Experimental conditions: 1.0% CO, 5.0% O₂ balanced with He at 1 bar; $F_T = 160 \text{ mL/min}$, catalyst mass m = 20 mg, wGHSV=480 000 mL/g·h.

4. Conclusions

- ✓ LSM supports & Ir/LSM materials are active to CO oxidation in the temperature range of ca. 200-450°C.
- \checkmark Ir/LSM significantly more active than LSM alone and in particular in their pre-reduced state, indicating that Ir⁰ phase outweighs IrO₂ in CO oxidation reaction.
- ✓ Increase of substitution of La by Sr in LSM support, causes a decrease in CO conversion efficiency of the catalysts.
- ✓ Clockwise hysteresis phenomena were observed, with their temperature altitude to be depressed as the La substitution by Sr increases.
- ✓ The high OSC of the LSM supports endowed Ir nanoparticles with exceptional anti-sinter properties.
- ✓ Ir-LSM catalysts remained stable even after exposure to extreme thermal aging conditions under oxidizing conditions.

Acknowledgements

Financial support by the GREEK-CHINESE BILATERAL RESEARCH AND INNOVATION **COOPERATION**, 2018-2021 program (Project No: T7 Δ KI-00356) is gratefully acknowledged.

time (h)