

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

DROSOU C.¹, FOUNTOULI T.V.¹, STRATAKIS A.², CHARISIOU N.D.³ GOULA M.A.³ and YENTEKAKIS I.V.

¹Laboratory of Physical Chemistry & Chemical Processes, School of Chemical & Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece ²School of Mineral Resources Engineering, Technical University of Crete, GR-73100 Chania, Greece

² School of Mineral Resources Engineering, Technical University of Crete, GR-73100 Chania, Greece
³ Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece

1. Introduction

- CO is a toxic gas that effects on quality of human health.
- <u>Main sources of CO emissions:</u> (a) automotive exhaust gases, (b) power plants, and (c) the petrochemical industry
- CO oxidation is an important reaction oxidation is a reaction with many applications such as H_2 production via hydrocarbons reforming and reduction of air pollution.
- CO oxidation has been investigated in various catalyst systems:
 - (a) noble metals (e.g., Au, Pt, Pd)
 - (b) non-noble (e.g., Cu, Ni) and
 - (c) metal-free catalytic systems.

Objectives

- ✓ Synthesis of noble metal-based catalytic systems, using a less costly noble metal such as Ir, dispersed on supports with high oxygen ion lability and oxygen storage capacity (OSC), such as alumina-ceria-zirconia (ACZ) mixed oxides supports
- ✓ Study of the effect of ACZ supports nature and preparation method on the CO abatement catalytic activity and stability.

2. Experimental

- A. Catalysts preparation
- Supports Al_2O_3 - Ce_xZr_{1-x} preparation (x=0,25, 0,5 0,75) via
 - ✓ Hydrothermal method (supports ACZ-H)
 - ✓ Co-precipitation method (supports ACZ-P)

- ✓ Hydrogen temperature programmed reduction (H_2 -TPR)
- ✓ Isothermal hydrogen chemisorption (H_2 -Chem)
- **C. Catalytic activity and thermal stability measurements** Feed Gas mixture: 1 % v/v CO, 5 % v/v O₂ /He, F_T =160 mL/min

➢ Ir catalysts preparation by wet impregnation

B. Materials characterization

- \checkmark N₂ physical adsorption-desorption isotherms (BET-BJH)
- ✓ X-ray powder diffraction (XRD) analysis

3. Results

Figure 1. CO conversion light-off profiles on pre-reduced (a) and pre-oxidized (b) Ir/ACZ catalysts. Experimental conditions: 1 v/v% CO, 5 v/v% O₂ balanced with He; wGHSV=320,000 mL·g_{cat}⁻¹·h⁻¹. Filled symbols, solid lines: hydrothermally synthesized catalysts; open symbols, dashed lines: catalysts synthesized by co-precipitation. Circles: Ir/ACZ-H1 and Ir/ACZ-P1 (Ce/Zr=0.25/0.75); triangles: Ir/ACZ-H2 and Ir/ACZ-P2 (Ce/Zr=0.25/0.5); stars: Ir/ACZ-H3 and Ir/ACZ-P3 (Ce/Zr=0.25/0.75).

 $(wGHSV \equiv 320\ 000\ mL/g_{cat}h)$

- ✓ Pre-reduced Ir-catalysts (25% H_2 /He, 350° C, 0.5 h)
- ✓ <u>Pre-oxidized Ir-catalysts</u> (20% O_2 , 400° C, 1 h)
- ✓ Thermal stability experiments at 320°C after consecutive oxidation steps at 600°C and 700°C

Table 1. Textural and morphological characteristics of the ACZsupports and counterpart Ir/ACZ catalysts prepared byhydrothermal (H) and co-precipitation (P) methods

Ce/Zr	$S_{BET} (m^2/g)$		Ir dispersion (%)
	Support	Catalyst	
0.25/0.75	154	216	66
0.5/0.5	172	184	66
0.75/0.25	149	157	70
0.25/0.75	113	134	70
0.5/0.5	102	100	81
0.75/0.25	115	125	70
	Ce/Zr 0.25/0.75 0.5/0.5 0.75/0.25 0.25/0.75 0.5/0.5 0.75/0.25	Ce/Zr SBET (2) 0.25/0.75 154 0.5/0.5 172 0.75/0.25 149 0.25/0.75 113 0.5/0.5 102 0.75/0.25 115	Ce/ZrSBET (m²/g)SupportCatalyst0.25/0.751540.5/0.51721840.75/0.251490.25/0.751130.5/0.51020.75/0.25115

Table 2. Temperatures for 50% CO conversion (T_{50})

Samnle	T ₅₀ (°C)			
Sampie	Pre-reduced	Pre-oxidized		
Ir/ACZ-H1	207	287		
Ir/ACZ-H2	245	290		
Ir-ACZ-H3	236	300		
Ir-ACZr-P1	245	290		
Ir-ACZ-P2	264	301		
Ir-ACZ-P3	255	309		

4. Conclusions

✓ The pre-treatment of catalysts as well as the preparation method, effect on Ir-ACZ activity. More specifically, pre-reduced catalysts are more active than pre-oxidized ones ignited. In addition, hydrothermally made catalysts are more active compared to their counterpart catalysts made via co-precipitation.

✓ Metallic Ir is more active than the IrO_2 phase in CO oxidation.

✓ ACZ mixed oxide supports are particularly satisfactory materials for the design of stable Ir-based catalysts for CO abatement processes as they present remarkable stability on thermal aging under oxidative conditions.

