AN OVERVIEW OF RECENT ADVANCES IN CATALYTIC DECOMPOSITION OF N₂O ON NOBLE METAL AND METAL OXIDE CATALYSTS ON NOBLE METAL AND METAL OXIDE CATALYSTS

T. V. FOUNTOULI, C. DROSOU, G.ARTEMAKIS, N.D. CHARISIOU, M.A. GOULA, I. V. YENTEKAKIS

OF CRETE

ΠΑΝΕΠΙΣΤΗΜΙΟ

ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

The catalytic decomposition of nitrous oxide (N_2O) into N_2 and O_2 has attracted intense research interest in the past decades due to the fact that large amounts of N₂O are currently produced by anthropogenic activities, such as stationary or mobile combustion processes of fossil fuels and/or biomass, certain chemical industries (e.g. adipic and nitric acid production plants) and the use of fertilizers in land cultivation. However, nitrous oxide is a powerful greenhouse gas, which has recently also been recognized as the dominant stratospheric ozone-depleting substance. It is estimated that N₂O emissions will double by around 2050, if the appropriate methods for N₂O abatement from anthropogenic emissions are not applied urgently and widely. Therefore, the control of N₂O emissions is of great environmental importance. The catalytic decomposition of N_2O into N_2 and O_2 is the most promising and cost-effective technique to reduce its emissions, due to the simplicity, the high efficiency and low energy requirements of the process compared to other methods like thermal decomposition and selective absorption. To this purpose, a wide variety of catalytic materials for N₂O decomposition has been developed and studied in recent years. The main aim of the present work is to comprehensively and comparatively review the recent advances on the research for developing effective deN₂O catalytic materials involving both supported noble metal (NM) and NM-free metal oxide catalysts. Particular attention is paid to the main factors influencing the $de-N_2O$ activity and stability of the catalysts, among others the preparation method, the nature and the oxidation state of the active phases under reaction conditions, possible metal-support interactions and crystallite shape or size effects, as well as imposed reaction conditions (temperature, presence of other reactants, etc) in order to gain a deep understanding of structure-activity relationships that promote the de-N₂O efficiency of the catalytic systems.

Table 1 summarizes for each noble metal the catalyst composition, its preparation method, reaction conditions, N₂O conversion (%) and/or light off temperature (T_{50}) . T_{50} is a characteristic criterion for the estimation of the catalytic activity and is called light-off temperature, which is the temperature where the conversion of the reactant is 50%

Catalysts code (Metal loading/wt%, precursor, preparation method)	Reaction conditions	N ₂ O conversion %/ ⁰ C	T ₅₀ (⁰ C)	Ref.
Rh/MgO (1.21%, w/w, Rh(NO3)3, impregnation)	1000 ppm N ₂ O, 5vol% O ₂ in He, GHSV=12000 h^{-1}	100 (300)	249	
Rh/SiO2 (1.11%, w/w, Rh(NO3)3, impregnation)	1000 ppm N ₂ O, 5vol% O ₂ in He, GHSV=12000 h^{-1}	100 (300)	249	
Rh/CeO2 (0.19%, w/w, Rh(NO3)3, impregnation)	1000 ppm N ₂ O, 5vol% O ₂ in He, GHSV=12000 h^{-1}	82 (450)	289	
Rh/Al2O3 (0.58%, w/w, Rh(NO3)3, impregnation)	1000 ppm N ₂ O, 5vol% O ₂ in He, GHSV=12000 h^{-1}	100 (450)	341	
Rh/TiO2 (0.38%, w/w, Rh(NO3)3, impregnation)	1000 ppm N ₂ O, 5vol% O ₂ in He, GHSV=12000 h^{-1}	90(450)	342	
Rh/CeLaZr (0.5%/wt, Rh(NO3)3·xH2O, impregnation)	2000 ppm N ₂ O in He, GHSV=67000 h ⁻¹ , over O ₂ pre-oxidized	100 (450)		
Rh/CeLaZr (0.5%/wt, Rh(NO3)3·xH2O, impregnation)	2000 ppm N ₂ O in He, 5% O ₂ , GHSV=67000 h ⁻¹ , over O ₂ pre-oxidized	98.8 (450)		
Rh/CeLaZr (0.5%/wt, Rh(NO3)3·xH2O, impregnation)	2000 ppm N ₂ O, 2000 ppm NO in He, GHSV=67000 h ⁻¹ , over O ₂ pre-oxidized	37.7 (450)		
Rh/CeLaZr (0.5%/wt, Rh(NO3)3·xH2O, impregnation)	2000 ppm N ₂ O in He, GHSV=67000 h ⁻¹ , over C_3H_6 pre-reduced	100 (450)		[2]
Rh/CeLaZr (0.5%/wt, Rh(NO3)3·xH2O, impregnation)	2000 ppm N ₂ O in He, 5% O2, GHSV=67000 h ⁻¹ , over C ₃ H ₆ pre-reduced	100 (450)		
Rh/CeLaZr (0.5%/wt, Rh(NO3)3·xH2O, impregnation)	2000 ppm N ₂ O, 2000 ppm NO ₃ in He, GHSV=67000 h ⁻¹ over C_3H_6 pre-reduced	100 (450)		
Ru/MgO (0.93%, Ru(NO)(NO3), impregnation)	1000 ppm N ₂ O in He, GHSV=24,000 h ⁻¹		>500	
Ru/CeO ₂ (0.19%, Ru(NO)(NO3), impregnation)	1000 ppm N ₂ O in He, GHSV=24,000 h ⁻¹		483	
Ru/SiO ₂ (1.14%, Ru(NO)(NO3), impregnation)	1000 ppm N ₂ O in He, GHSV=24,000 h ⁻¹		348	[3]
Ru/TiO2 (0.4%, Ru(NO)(NO3), impregnation)	1000 ppm N ₂ O in He, GHSV=24,000 h ⁻¹		307	
Ru/Al2O3 (0.64%, Ru(NO)(NO3), impregnation)	1000 ppm N ₂ O in He, GHSV=24,000 h ⁻¹		330	•
Ir/γ -Al ₂ O ₃ (1.0wt%, IrCl3, impregnation)	0.1%N ₂ O, He balance, catalyst mass, w _{cat} = 50 mg, WHSV=180 l g ⁻¹ h ⁻¹	100 (~490)	417	
Ir/YSZ (1.0wt%, IrCl3, impregnation, 8 mol% yttria stabilized zirconia)	0.1%N ₂ O, He balance, catalyst mass, w_{cat} = 50 mg, WHSV=180 l g ⁻¹ h ⁻¹	100 (~510)	435	
Ir/GDC (1.0wt%, IrCl3, impregnation, 10 mol% gadolinia doped ceria)	0.1%N ₂ O, He balance, catalyst mass, w_{cat} = 50 mg, WHSV=180 l g ⁻¹ h ⁻¹	80 (~575)	490	
Ir/ACZ (1.0wt%, IrCl3, impregnation, (80 wt%Al ₂ O ₃ -10 wt% CeO_2 -10 wt% ZrO ₂ mixed oxide))	0.1%N ₂ O, He balance, catalyst mass, w_{cat} = 50 mg, WHSV=180 l g ⁻¹ h ⁻¹	80 (~575)	515	
Pd-Al ₂ O ₃ (2 wt. %, Pd(NO ₃) ₂ ·2H ₂ O, dry impregnation)	0.12% N ₂ O, balanced with He, catalyst mass, w_{cat} = 150 mg, GHSV= 35000 h ⁻¹	100 (450)	350	
$Pd-Al_2O_3$ (2 wt. %, $Pd(NO_3)_2 \cdot 2H_2O_3$, dry impregnation)	0.12% N ₂ O, 5%O ₂ , balanced with He, catalyst mass, w_{cat} = 150 mg, GHSV= 35000 h-1	100 (450)	370	
$Pd-Al_2O_3$ (2 wt. %, $Pd(NO_3)_2 \cdot 2H_2O_3$, dry impregnation)	0.12% N ₂ O, 0.17% C ₃ H ₈ , balanced with He, catalyst mass, w_{cat} = 150 mg, GHSV= 35000 h ⁻¹	100(400)	275	
Pd-Al ₂ O ₃ (2 wt. %, Pd(NO ₃) ₂ ·2H ₂ O, dry impregnation)	$0.12\% N_2O_{10}, 5\%O_{2}, 0.17\% C_{3}H_8$, balanced with He, catalyst mass, $w_{cat} = 150 \text{ mg}, \text{GHSV} = 35000 \text{ h}^{-1}$	100(450)	335	[5]
Pt/Al ₂ O ₃ (0.5 wt%, Pt(NH3)2(NO2)2, co-precipitation)	0.1% N ₂ O, balance He, GHSV = 10,000 h ⁻¹	33 (600)		
$\frac{Pt(0.5K) / Al_2O_3 - CeO_2 - La_2O_3 (0.5 wt\%, Pt(NH_3)_2(NO_2)_2, co-precipitation)}{Pt(0.5K) / Al_2O_3 - CeO_2 - La_2O_3 (0.5 wt\%, Pt(NH_3)_2(NO_2)_2, co-precipitation)}{Pt(0.5K) / Al_2O_3 - CeO_2 - La_2O_3 (0.5 wt\%, Pt(NH_3)_2(NO_2)_2, co-precipitation)}$	0.1% N ₂ O, balance He, GHSV = 10,000 h ⁻¹	100 (480)		[6]
Pt(1K)/Al ₂ O ₃ -CeO ₂ -La ₂ O ₃ (0.5 wt%, Pt(NH ₃) ₂ (NO ₂) ₂ , co- precipitation)	0.1% N ₂ O, balance He, GHSV = 10,000 h ⁻¹	100 (450)		

The general mechanism of the N₂O decomposition reaction comprises three elementary steps : $N_2O_{(g)} + * \Rightarrow N_{2(g)} + * -O$ (1) $2 * -O \Rightarrow O_{2(g)} + 2 *$ (2)

 $N_2O_{(g)} + *-O \stackrel{\sim}{\Rightarrow} N_{2(g)} + O_{2(g)} + * (3)$, where (* represents a catalytically active site)

2. Decomposition of N_2O on noble metal catalysts

Noble metals mostly studied in N₂O catalysis are platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir). Among them, Rh was generally found to be the most active, although it is the most expensive due to its scarcity and extensive use in three-way catalytic converters (TWCs). The less expensive Ir and especially Ru, have found to be almost as good as Rh on N_2O decomposition activity. However, a drawback of both Ru and Ir nanodispersed catalysts is their inferior thermal stability compared to that of Rh and Pt. The use of Au and Ag-based catalysts has been less reported for the deN₂O process. The choice of support is very important and various supports have been studied for the N_2O decomposition, such as metal oxides (e.g. Al₂O₃, SiO₂, TiO₂, CeO₂, Fe₂O₃), perovskites and mesoporous materials. It is worth to note that the impact of H₂O, CO, CO₂, O₂, NO, and NO₂ on N₂O reduction is particularly important, since these substances are usually present in excess in N_2O containing gas streams. Especially, the addition of oxygen to the gas feed limits the conversion of N₂O and decreases reaction rates over supported noble metal catalysts in most cases, because the oxygen presence oxidizes the active sites of the catalysts (see Fig 1). The catalytic performance in the decomposition of N₂O is also correlated with different noble metal particle sizes. The structure-activity relations seem to be very complex, however small nanoparticles are more active species. Furthermore, the effect of preparation method and the addition of electropositive promoters, such as alkali or alkaline earth metals, have also been reported to play a key role on de-N₂O process over several catalytic systems.

Table 2 summarizes for each metal oxide the catalyst composition, its preparation method, reaction conditions, light off temperature (T_{50}) , as well as an estimated temperature for its full conversion (T_{100})

Catalyst	Preparation method	Reaction conditions	T ₁₀₀ (⁰ C)	T ₅₀ (⁰ C)	Reference
		Single metal oxides and spinels			
Co_3O_4	Solution combustion, Hydrothermal.	$10\%N_2O$ in Ar, WHSV= 7.200cc/g*h	430,530, >>650	$\sim 290, \sim 350, \sim 570$	[8]

Fig 1: N₂O decomposition activity of Ru/ γ -Al₂O₃ catalyst for various feeds: (a) 500 ppm N₂O in He, (b) 500 ppm N₂O, 5%O₂ in He, and (c) 500 ppm N₂O, 5%O₂, 50ppm SO₂, 10%H₂O in He. Total flow rate: 500 cm3/min, catalyst weight: 0.5 g, GHSV: 56,000 h⁻¹ [7].

3. Decomposition of N_2O on non-noble metal oxides

The largest amount of NM-free oxides have studied as catalysts in the specific process, includes single metal oxides and spinels, as well as binary mixed oxides, spinels and perovskites. Among the single oxides, the most effective seem to be the mesoporous Co_3O_4 , NiO, MnO₂ and CuO oxides. Co_3O_4 spinel is the most active single oxide, that's why is the most well studied. Regarding to the binary oxides, zirconia-based catalysts are nowadays getting much more attention due to the tetragonal ZrO_2 crystal structure sensitivity in the reaction. However, ceria-based catalysts have gained the center of interest because of the high Ce^{3+}/Ce^{4+} redox cycle contribution in N₂O decomposition, especially in combination with other oxides which also possess redox cycle, such as CuO and the spinel Co_3O_4 . Furthermore, Co_3O_4 spinel is often partially substituted by other metals so as to improve its physicochemical and catalytic properties. Bivalent transition or alkali earth metals (e.g. Mg^{2+} , Ni²⁺, Zn²⁺) are preferred. The most active transition metal in such structures. Lastly, it is worth mentioning that the promoting effect of alkali metals has also been examined on the majority of the aforementioned catalyst types and especially on the cobalt-based spinel catalysts. This promoting effect in the process is attributed to an induced electron interaction, improving the electron donation ability of cobalt which finally facilitates the N₂O adsorption and decomposition. Potassium seems to be the best promoter in this field.

	Coprecipitation				
Co ₃ O ₄	Thermal decomposition	$0.05\%N_2O \text{ in } N_{2}, WHSV = 24.000cc/g*h$	>>510	>510	[9]
NiO	Hydrothermal	$0.2\%N_2O/2.0\%O_2$ in He, WHSV= 60.000cc/g*h	>500	392	[10]
MnO ₂	Hydrothermal	$0.5\%N_2O$ in He, WHSV= $7.200cc/g*h$	>>400	~380	[11]
CuO	Hydrothermal	$0.2\%N_2O/2.0\%O_2$ in He, WHSV= 60.000cc/g*h	550	~460	[12]
CeO ₂	Hydrothermal	$0.2\%N_2O/2.0\%O_2$ in He, WHSV= $60.000cc/g*h$	>>600	~550	[12]
ZrO ₂	Sol-gel	0.1%N ₂ O in He, WHSV= 18.000cc/g*h	>>550	>550	[13]
		Binary mixed oxides			
NiO/CeO ₂ , Ni/Ce=8	Hydrothermal	$0.2\%N_2O$ in He, WHSV= 60.000cc/g*h	~450	~350	[10]
NiO/CeO ₂ , Ni/Ce=8	Hydrothermal	$0.2\%N_2O/2.0\%O_2$ in He, WHSV= 60.000cc/g*h	~450	367	[10]
CuO/CeO ₂ , Cu/Ce=1	Hydrothermal	0.2%N ₂ O in He, WHSV= 60.000cc/g*h	500	~380	[12]
CuO/CeO ₂ , Cu/Ce=1	Hydrothermal	$0.2\%N_2O/2.0\%O_2$ in He, WHSV= $60.000cc/g*h$	550	~425	[12]
10%wt. Fe_2O_3/ZrO_2	Sol-gel	0.1%N ₂ O in He, WHSV= 18.000cc/g*h	>550	~490	[13]
10%wt. NiO/ZrO ₂	Sol-gel	0.1%N ₂ O in He, WHSV= 18.000cc/g*h	>>550	~520	[13]
		Binary Spinels			
$Co_3O_4/10\%$ wt. CeO_2	Solution combustion	$10\%N_2O$ in Ar, WHSV= 7.200cc/g*h	350	230	[8]
MgCo ₂ O ₄	Thermal decomposition	$0.05\%N_2O$ in N ₂ , WHSV= 24.000cc/g*h	>525	467	[9]
Alk-MgCo ₂ O ₄ , Alk=Cs,Li,Na,K , Alk/Co=0.05	Incipient wetness impregnation	$0.05\%N_2O \text{ in } N_2 \text{ , WHSV} = 24.000cc/g*h$	>500, >500, >500, ~475	332, 405, 374, 308	[9]
		Binary Perovskites			
LaCoO ₃ , LaFeO ₃ , LaMnO ₃ , LaCrO ₃	Solution combustion	0.5%N ₂ O in He, WHSV= 120.000cc/g*h	~550, ~750, ~900, ~750	455, 645, 651, 660	[14]
LaFeO ₃ , SrFeO ₃	Sol-gel auto-combustion	$10\%N_2O/5\%O_2$ in He, WHSV= 18.000cc/g*h	~620, >620	485, 540	[15]

4. Conclusions

- ✓ N_2O decomposition is one of the most efficient methods for N_2O abatement.
- ✓ A number of studies reveal the important role of catalytic performance of noble metals and their support materials

under a variety of different conditions.

✓ Among the metal oxides have been applied in the deN_2O process, cobalt spinel based and ceria based oxides are in the centre of interest.

 \checkmark Metal oxides seem to highly compete the activity of the more expensive supported noble metals in the process.

References

Wang Y. et al., Catal. Sci. Technol., 11, (2021), 671-3.
 Beyer H. et al., Appl. Catal. A, 391, 1–2, (2011), 411-416.
 Zheng J. et al., Appl. Catal. A, 505, (2015), 44–51.
 Yentekakis I.V. et al., Catal. Lett., 148, (2018), 341–347.
 Pekridis G. et al., Top. Catal., 52, (2009), 1880-1887.
 Konsolakis M. et al., Chemical Engineering Journal, 230, (2013) 286-295.

7. Komvokis V.G. et al., Appl. Catal. B, 89, (2009), 627–634.

 8. Mahammadunnisa S.K. et al., Journal of Chemical Sciences, 128(11), (2016), 1795-1804.
 9. Abu-Zied B.M., Chinese Journal of Catalysis, 32(1), (2011), 264-272.
 10. Liu Z. et al., Catalysis Today, 293-294, (2017), 56-60.
 11. Ren Y. et al., Materials, 7(5), (2014), 3547-3556.
 12. Liu Z. et al., Catalysis Today, 297, (2017), 78-83.
 13. Basahel S.N. et al., Catalysis Today, 348, (2020), 166-176.
 14. Russo N. et al., Industrial and Engineering Chemistry Research, 46(12), (2007), 4226-4231.
 15. Margellou A.G. et al., Reaction Kinetics, Mechanisms and Catalysis, 127(2), (2019), 825-838.

Acknowledgements

Financial support by the GREEK-CHINESE BILATERAL RESEARCH AND INNOVATION COOPERATION, 2018-2021 program (Project No: T7ΔKI-00356) is gratefully acknowledged.